|
2k11 Outhouse People's Champion
|
|
by sdsichero » Tue Mar 20, 2012 8:10 pm
hmn.
Nuclear Fusion Simulation Shows High-Gain Energy Output
High-gain nuclear fusion could be achieved in a preheated cylindrical container immersed in strong magnetic fields, according to a series of computer simulations performed at Sandia National Laboratories.
The simulations show the release of output energy that was, remarkably, many times greater than the energy fed into the container's liner. The method appears to be 50 times more efficient than using X-rays -- a previous favorite at Sandia -- to drive implosions of targeted materials to create fusion conditions.
"People didn't think there was a high-gain option for magnetized inertial fusion (MIF) but these numerical simulations show there is," said Sandia researcher Steve Slutz, the paper's lead author. "Now we have to see if nature will let us do it. In principle, we don't know why we can't."
High-gain fusion means getting substantially more energy out of a material than is put into it. Inertial refers to the compression in situ over nanoseconds of a small amount of targeted fuel.
Such fusion eventually could produce reliable electricity from seawater, the most plentiful material on earth, rather than from the raw materials used by other methods: uranium, coal, oil, gas, sun or wind. In the simulations, the output demonstrated was 100 times that of a 60 million amperes (MA) input current. The output rose steeply as the current increased: 1,000 times input was achieved from an incoming pulse of 70 MA.
|
2k11 Outhouse People's Champion
Outhouser since: Wed Jun 04, 2008 10:25 pm Location: Secret Base, Honolulu, HI Posts: 91540
Likes: 0 post
Liked in: 0 post Search Threads Search Posts
|
by sdsichero » Tue Mar 20, 2012 8:10 pm
hmn.
Nuclear Fusion Simulation Shows High-Gain Energy Output
High-gain nuclear fusion could be achieved in a preheated cylindrical container immersed in strong magnetic fields, according to a series of computer simulations performed at Sandia National Laboratories.
The simulations show the release of output energy that was, remarkably, many times greater than the energy fed into the container's liner. The method appears to be 50 times more efficient than using X-rays -- a previous favorite at Sandia -- to drive implosions of targeted materials to create fusion conditions.
"People didn't think there was a high-gain option for magnetized inertial fusion (MIF) but these numerical simulations show there is," said Sandia researcher Steve Slutz, the paper's lead author. "Now we have to see if nature will let us do it. In principle, we don't know why we can't."
High-gain fusion means getting substantially more energy out of a material than is put into it. Inertial refers to the compression in situ over nanoseconds of a small amount of targeted fuel.
Such fusion eventually could produce reliable electricity from seawater, the most plentiful material on earth, rather than from the raw materials used by other methods: uranium, coal, oil, gas, sun or wind. In the simulations, the output demonstrated was 100 times that of a 60 million amperes (MA) input current. The output rose steeply as the current increased: 1,000 times input was achieved from an incoming pulse of 70 MA.
|